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Shear flows and turbulence have a major impact on the transport of quantities, from 
heat to material to pollutants. This article explores transport and its sensitivity to novel 
interactions between shear flow and turbulence.

M any geophysical systems have 
flows whose Reynolds number 
(or some other appropriate di-
mensionless scaling number) is 

sufficiently large that turbulence becomes an 
important feature of the fluid dynamics.1 Such 
turbulent geophysical systems range from the 
magnetofluid in the Earth’s interior, which 
creates the Earth’s magnetic field, to fluids on 
its surface, such as oceans and the extended 
atmosphere.

In this article, we make a connection to the In-
ternational Polar Year (IPY) by examining the tur-
bulent transport of ozone into polar ozone holes. 
We also illustrate the study of turbulent transport 
with a hierarchical series of models (starting with 
the most complicated and getting simpler). These 
models help researchers investigate the transport 
dynamics at different levels of physical, math-
ematical, and computational complexity.

turbulent transport
Turbulence is one of the major open research 
topics in classical physics. Although it’s defined 
narrowly as the high-Reynolds-number behav-
ior of flows in neutral fluids modeled by the Na-
vier-Stokes equations or some variant thereof, it’s 
also defined broadly as behavior in any system in 
which the nonlinear interactions between dispa-
rate scales dominate the dynamics. 

In this article, we use the Navier-Stokes equa-
tion as our paradigm, but we work from a gen-
eralizable definition of turbulence as any system 
of incoherent fluctuations in which the nonlinear 
dynamics (couplings) dominate the linear dynam-
ics to produce an exchange of fluctuation energy 
over many spatial scales. For this to hold true, 
the fluctuations must exist on many scales. These 
scales often encompass orders of magnitude, as il-
lustrated in Figure 1—here, the turbulent struc-
tures are visible in the volcanic plume from the 
largest scales in the photo, down to the smallest 
resolvable scales.

The Navier-Stokes equation is
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where v is the velocity of a fluid parcel of mass 
density , p is the pressure,  is the kinematic vis-
cosity, and F is an external force. The self-advec-
tion term v ⋅ ∇v is the nonlinearity that couples 
disparate scales, and when it greatly exceeds the 
viscous term, turbulence generally occurs over a 
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range of spatial scales known as the inertial range. 
Typically, the damping in turbulent systems oc-
curs at small scales, but in some systems, the drive 
and damping can occur at various scales and thus 
help set the turbulence’s inertial range.

Turbulence is frequently described as a random 
process, and even though we can treat it as such 
for some purposes, it’s important to remember 
that the Navier-Stokes equation is deterministic. 
The dynamics can be very high dimensional but 
essentially remain a form of chaos, meaning that 
the dynamics is deterministic but very sensitive 
to initial conditions, which fundamentally limits 
long-term prediction.

Although turbulence is a rich, beautiful, and 
complex phenomenon, it’s the enhancement of 
transport by turbulence that is of greatest interest 
in many geophysical systems.1 Think of classical 
diffusion as a random-walk process with the step 
size set by the distance between particle collisions 
(the mean free path). This distance tends to be 
very small (~10–6 m in air at sea level), so despite 

InternatIonal Polar Year
By Uma Bhatt and David newman,  
University of alaska Fairbanks

This final article in the CiSE International Polar Year (IPY) 
series brings the application of some analytical and 

computational research originally developed for fusion 
plasmas to bear on geophysical systems such as the dy-
namics of the ozone hole. To check the latest status of the 
ozone hole over Antarctica, visit http://ozonewatch.gsfc.
nasa.gov. The NOAA ozone Web site (www.ozonelayer.
noaa.gov) displays data for both poles and has an extensive 
FAQ. Although the ozone hole over Antarctica doesn’t yet 
seem to be decreasing, studies suggest that reducing the 
use of chlorofluorocarbons has led to an overall recovery of 
ozone in the upper stratosphere.

One of the objectives of the current IPY is to link re-
searchers across different fields to address questions and 
issues lying beyond the scope of individual disciplines. 
Amazingly enough, numerous interdisciplinary activities 
are indeed emerging under the IPY banner as people from 
different disciplines work to synthesize their knowledge.

The Belgian government, for example, commissioned 
the International Polar Foundation (www.polarfounda-
tion.org) to design and build a state-of-the-art ecofriendly 
research station for Antarctica, and in September, the 
Princess Elisabeth Antarctica was unveiled in Brussels as 
the first zero-emission research station. After several days 

of public viewing, the station was dismantled and is now 
being shipped to Antarctica, where it will be located 
between the Russian station Novolazarevskaya and the 
Japanese station Syowa. Visit www.antarcticstation.org for 
more information.

A better understanding of the health of indigenous 
populations in the Arctic is a new theme of the current 
IPY. Roughly 4 million people from numerous indigenous 
groups inhabit the Arctic, and the impact of a changing 
climate and environmental contaminants on their health 
is a growing concern. The Arctic Human Health Initiative 
(www.arctichealth.org/ahhi/) was formed to research cur-
rent and developing human health issues in the north.

Some of the earlier articles in this series have dealt with 
ice, but as we view the record minimum Arctic sea-ice 
level in 2007 (http://arctic.atmos.uiuc.edu/cryosphere/), 
the extensive observations during this current IPY will be 
critical for understanding the processes that have led to 
these conditions. A movie of daily Arctic sea ice (warning: 
it’s big) at http://arctic.atmos.uiuc.edu/cryosphere/sea.ice.
movie.2007.mov provides a sobering view of the situation 
we might face in the future.

As we close this special theme track, we thank CiSE’s 
editor in chief, Norman Chonacky, its senior editor, Jennifer 
Stout, and all the staff on the publication for their sup-
port, help, and professionalism in making this series work. 
Last but not least, we thank the authors and anonymous 
reviewers who put together these outstanding articles and 
reviewed them so quickly.

Figure 1. The 1992 Mt. Spurr eruption. Note the turbulent structures, 
which are visible in the volcanic plume from the largest scales down 
to the smallest resolvable ones. (Source: //first name?// R. McGimsey, 
US Geological Survey, 18 August 1992; http://pubs.usgs.gov/dds/dds-
39/album.html.)
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the high collision frequency, classical diffusion is 
relatively slow. This diffusion process on average 
moves material (or heat) from regions of higher 
concentration to lower concentration, thus slowly 
relaxing gradients in the diffusing quantity. Tur-
bulence, however, can have average scale lengths 
much larger (centimeters, meters, or even tens of 
kilometers, depending on the system). 

If we consider the process of turbulent transport 
as a random-walk process with the step size given 
by a typical turbulent eddy size, we can construct 
the effective turbulent diffusivity from step size 
and turbulent velocity (or eddy turnover time). 
In a turbulent system, this turbulent diffusion is 
usually many orders of magnitude larger than the 
classical diffusion and is called anomalous diffusion. 
Thus, the turbulent diffusion relaxes gradients 
much more rapidly. A classic example is mixing a 
drink:2 if we carefully place a layer of gin on top of 
a layer of vermouth, the two will mix by classical 
diffusion over the course of many hours. (This as-
sumes idealized liquids, so we aren’t worried about 
density stratification and so forth.) If, instead of 
sitting quietly and watching the classical diffusion 
at work, we get impatient and shake (or perhaps 
stir) the drink, the turbulence will fully mix the 
components in seconds, as Figure 2 shows. The air 
in a large auditorium is another good example. If 
the air is still, the smell from a squirt of perfume 
at one end will take tens of hours to reach someone 
on the other end. However, if people move around 
in the room enough to cause a turbulent velocity 
field, some of the perfume (a detectable odor) will 
reach the other end in less than a few minutes.

In complex models (global climate models, for ex-
ample), researchers often simulate turbulent trans-
port with an effective diffusivity for scales below 

those resolved by the model. This practice is called 
subgrid-scale modeling, or parameterization. Because 
of the importance of subgrid scales in overall sys-
tem dynamics, getting this parameterization right 
is crucial for matching the model to the real world. 
A principal goal in developing physical system 
models is the ability to do predictive modeling, so 
correctly capturing any subgrid-scale fluxes is key. 

However, this subgrid-scale parameteriza-
tion—while clearly necessary for computational 
tractability—often leaves out smaller scales’ real 
dynamics. Turbulence, for example, is a multi-
scale phenomenon, so leaving out existing scales 
can change the system’s dynamics. As we model 
such systems, it’s important to keep in mind what 
we’re leaving out and what effect it can have on the 
modeled results. “Missing” physics can include a 
variety of items:

The interaction between scales (both in a single 
field and between multiple fields) isn’t a one-way 
street. Smaller scales affect larger scales, and 
larger scales affect smaller scales.
The cut-off between 2D and 3D dynamics due 
to rotation or stratification isn’t as clean as we 
pretend, so omitting the interaction between 
these different types of turbulence omits a 
physical process.
By restricting system size, we omit some global 
dynamics that can fundamentally change sys-
tem behavior.
The representation of turbulence’s sources and 
sinks and the scales at which they occur is cru-
cial. Turbulence dynamics depend on the scales 
of drive and damping.
Parameterizations (particularly subgrid-scale 
ones) omit the fast intermittent behavior ob-
served in many natural systems. Small-scale 
stochastic forcing sometimes addresses this, but 
it’s an open issue as to whether diffusive param-
eterization makes physical sense.

In addition to turbulence and turbulent trans-
port, many geophysical systems have shear flows, 
which vary in a direction perpendicular to flow 
velocity. Figure 3 illustrates a sheared flow (pur-
ple arrows) in which velocity is in the x-direction 
and magnitude varies in the y-direction. Systems 
with both shear flow and turbulence include 
ocean currents and their offspring,3 Mediterra-
nean eddies,4 many boundary layers and bound-
ary-layer jets, ozone holes5 (and atmospheric jets 
in general), high-altitude jets, the magnetopause, 
and many magnetospheric flows. Some of these 
flows can persist for months or even years, where-

•

•

•

•

•

(a) (b)

Figure 2. Turbulence in a martini. You can (a) wait 
hours for it to mix or (b) shake (or stir) it to mix it in 
seconds.



november/DeCember 2007  23

as others are much more transient, lasting sec-
onds or minutes. 

Sheared flows and turbulence can interact in 
various ways and have a significant impact on a 
system’s transport properties:

Small-scale turbulent diffusion across a larger-
 scale, quasi-static sheared flow can lead to 
enhanced transport, or advective diffusion. Tur-
bulent diffusion transports material across a 
sheared flow from a lower- to higher-velocity 
region, thereby allowing for faster displacement 
of the material in the direction of the flow. 
Turbulence can produce sheared flows through 
momentum transport, an example of which is 
Reynolds-stress-driven shear flows. They’re 
thought to be responsible for the sheared flows in 
systems as diverse as the solar convection zone, 
the atmosphere (for example, in quasi-biennial 
oscillation [QBO]), and laboratory plasmas. 
Unstable sheared flows can cause turbulence 
through instabilities such as the Kelvin-Helm-
holz (K-H) instability. Unstable shear flows 
have many possible causes, including stirring, 
large-scale drivers, geostrophic balance, grav-
ity, and pressure driven through an opening, to 
name just a few.  It’s worth noting that some 
of these instabilities, such as the K-H instabil-
ity, have different behaviors in different sys-
tems—for example, in a magnetized plasma the 
magnetic field and its configuration inhibit the 
onset of the K-H instability allowing a larger 
sheared flow to develop. This makes the effect 
discussed next easier to observe in plasmas.
Sheared flows can reduce or suppress turbu-
lence and turbulent transport. 

Which of these four processes occurs in a given 
situation depends on flow stability properties, ge-
ometry, turbulence’s driving sources, inhomoge-
neities, and the hierarchies of spatial and temporal 
scales within turbulence and shear flow.6

Sheared flows can reduce turbulent transport 
through at least four mechanisms. The order of 
these mechanisms is based on the probable or-
dering of thresholds for sheared-flow effects on 
transport, starting with an effect that requires 
the largest sheared flow down to one that requires 
the smallest. 

In the first mechanism, sheared flows modify 
the turbulence’s underlying linear drive, thereby 
reducing turbulence simply by reducing drive. 
This mechanism appears to be a subdominant 
mechanism in plasma experiments because turbu-
lence is often observed in regions in which shear 

•

•

•

•

is predicted to totally quench turbulent motion, 
but it shouldn’t be discounted if the linear drive 
is frequency-dependent and the shearing rate is 
large. (The shearing rate is the reciprocal of the 
time for parcels initially displaced across the shear 
to separate one correlation length along the flow.) 
This first mechanism isn’t universal in the sense 
that it depends on the detailed spatial profiles of 
the quantities that govern instability. 

However, the second mechanism—shear-in-
duced decorrelation of turbulence—is universal, 
meaning it doesn’t depend on the shear profile’s 
details.7 Here, an enhancement of the normal self-
decorrelation (tearing apart) of eddies is caused by 
a distortion in the sheared flow. Figure 3 shows 
the threshold condition in shear strength; the 
high shear differentially advects fluid parcels 
across a correlation length in the flow direction in 
a fraction of the turbulent correlation time, thus 
increasing the decorrelation rate. In the presence 
of invariant external forcing, turbulent amplitudes 
must decrease to compensate for the larger decor-
relation rate (this reduction requires Ls < LT with 
Ls representing the shear scale length and LT the 
turbulent scale length). Figure 4 illustrates both 
the turbulent and the shear-enhanced decorrela-
tion possible in a turbulent system with a flow. 

A third mechanism is a shear-induced phase 
shift between the advected and the advecting 
fluctuations.8 This mechanism is largely insensi-
tive to shear profiles, with transport governed by 
the correlation between advecting and advected 
fields, making the phase difference between the 
two fluctuations extremely important. If the fluc-
tuations are exactly out of phase, no transport oc-
curs—if they’re exactly in phase, transport is at its 
maximum. In some systems, this can be the domi-
nant mechanism for reducing transport. 

The last mechanism is a shear-induced decor-
relation of transport events.9 It only applies in sys-
tems in which the transport comes from bursty, 
correlated, avalanche-like transport events. In 

Ls

LT

Ls
LT

(a) (b)

Figure 3. Sheared flow. An eddy in a sheared flow 
can have a shearing scale length (a) longer or (b) 
shorter than the turbulent scale.
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such a system, transport events can be decorre-
lated at a much smaller shearing rate than the tur-
bulence itself.

Modeling the ozone Hole
Because we want to examine shear flow/turbulence 
interactions in geophysical systems, we chose to 
look at the polar ozone hole’s phenomenology as 
an example application.

Researchers have found that O3 decreases in-
side the circumpolar vortex in late winter and early 
spring.5 The depletion mechanism is a complicated 
multipart chemical and photochemical process. 

However, dynamical remixing with the ozone rich 
air outside the vortex is blocked by the circumpolar 
jet. The earth’s rotation combined with cooling and 
subsidence lead to the winter circumpolar jet, which 
sets the stage for the hole. The chemical process 
starts in mid-winter with the depletion reaching its 
maximum in early spring. The depleted region re-
fills (remixes) in late spring with the break down of 
the vortex due to large-scale wave breaking.

The ozone barrier (in the form of the jet), tem-
perature, catalytic chemistry, and sunlight all 
combine to form the ozone hole (see Figure 5). 
Researchers have found that turbulence and tur-
bulent transport are present, as is a source of ozone 
outside the hole (just outside the jet). The jet maxi-
mum forms a potential vorticity (PV) barrier that 
prevents large-scale instability in the form of wave 
breaking and large-scale mixing. However, this 
doesn’t prevent small-scale turbulence from trans-
porting ozone into the hole from sources outside 
of it. So why is there a sharp edge in the constitu-
ents, including the ozone? The answer lies in the 
interaction between turbulence and shear flows.

a Beta Plane Model
To investigate the interaction between an atmo-
spheric jet and turbulence, we use a barotropic 
beta plane turbulence model for fluid dynamics 
on a rotating sphere, 

∂∇
∂

+ ∇ × ⋅∇∇ + ∂
∂

− ∇ =
2

2 4φ φ φ β φ µ φ
t

z
x

Sˆ ,

where  is the geostrophic stream function,  is 
the local meridional derivative of the Earth’s ro-
tation velocity, and  is the kinematic viscosity. 
Due to the atmosphere’s rotation and stratifica-
tion, for appropriate scales, a 2D approximation 
for stratospheric dynamics is generally valid and 
captures much of the system’s dynamics. We 
can evolve the system with or without a jet (for 
comparison), and for both driven and decaying 
turbulence. The jet flow is in the zonal direction 
with a cosine variation in the meridional direc-
tion. This variation has the advantage of compu-
tational simplicity in a pseudo-spectral code, and 
it also allows a clear spatial separation between 
the maximum in shear and the maximum in the 
curvature so that we can distinguish the effects of 
each on fluctuations and transport. 

Figure 6 shows the vorticity field for decaying 
beta plane turbulence with and without a jet, each 
after integration for a time of t = 2.2 (in normal-
ized time units). Without a jet, eddy distribution 
is isotropic; with a jet, eddies in regions that have 
weak shear resemble those without a jet, and those 

(a) (b)

Figure 4. Decorrelation. Both (a) turbulent and 
(b) shear-enhanced decorrelation is possible in a 
turbulent system. In turbulent decorrelation, eddies 
interact with each other with no mean flow. In 
shear-enhanced decorrelation, initially circular 
eddies in a shear flow are stretched out and then 
decorrelated, which reduces both scale sizes in the 
direction of the shear and transport.

Figure 5. Large ozone hole. This snapshot of ozone 
concentration above the South Pole is from 24 
September 2006. (Source: NASA Ozone Hole 
Watch; http://ozonewatch.gsfc.nasa.gov/.)
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in regions with strong shear are reduced in am-
plitude, elongated in the zonal direction, and re-
duced in size in the meridional direction. 

To quantify this observation, we used tracers such 
as those shown in Figure 7 to construct meaningful 
measures of the transport.10 We can track average 
transport behavior by introducing an ensemble of 
tracer particles, with each ensemble member ad-
vected passively by the flow. We calculate effective 
zonal (Kxx) and meridional (Kyy) diffusivities from 
the separation of pairs of tracer particles and diffu-
sivities from the mean squared difference between 
displacements of particle pairs in zonal and meridi-
onal directions <(xi – xj)2> and <(yi – yj)2>. The in-
dices i and j refer to different tracer particles. The 
instantaneous slope of <(xi – xj)2> and <(yi – yj)2> 
versus time determines the diffusion coefficients.

Figure 8 shows the result of this analysis. As the 
jet amplitude is increased, the global cross-flow 
diffusivity Kyy decreases up to the point at which 
the jet becomes K-H unstable. This decrease—
and the reduction of fluctuation intensity in the 
regions of strong shear evident in Figure 6—in-
dicates that some combination of the second and 
third turbulence-reduction mechanisms we des-
cribed earlier are at work. At the point of K-H 
instability, the unstable jet drives the turbulence 
to higher amplitude, relaxing the flow gradient. 
Both the higher intensity of turbulence and the 
reduced gradient increase the effective diffusivity. 
Figure 8b shows these diffusivities as a function 
of the turbulent amplitude (for a fixed jet ampli-
tude). As the turbulence’s amplitude increases, the 
advective (parallel) diffusivity decreases until it’s 
of the same magnitude as the cross-flow diffusiv-
ity. At this point, turbulence dominates the shear 
flow, and the diffusivity is effectively isotropic. For 
smaller turbulence amplitude, the shear decorre-
lation mechanism we described earlier makes the 
diffusion anisotropic. Local diffusivities calculat-
ed from localized tracer ensembles show that dif-
fusion is at a minimum in the regions of maximum 
shearing rate, not the regions of maximum flow.

This result suggests a mechanism for the sharp 
gradients observed at the edge of sheared flows 
(such as the circumpolar jet), despite background 
turbulence—namely, shear suppression of the 
turbulence and turbulent transport. This small-
er-scale effect, combined with the large-scale 
dynamical suppression of the large-scale wave 
breaking by the PV barrier, can keep the hole iso-
lated from the ozone-rich surrounding air.

Simple Models of interaction
As we discussed in the beginning of this article, 

turbulence can also create sheared flows, and as 
we’ve seen, these sheared flows can then react back 
on the turbulence itself. The conditions required 
for this are inhomogeneous and anisotropic tur-
bulence, which can lead to a nonzero Reynolds 
stress that can in turn produce shear flows.11 If 
the sheared flow is stable, it can then increase the 
turbulence’s decorrelation, thereby reducing the 
turbulent amplitude. A strong two-way coupling 
exists between the turbulent fluctuations and av-
eraged flows. Many turbulence models show this 
behavior, but it’s often useful to extract the mini-
mal physics needed for the process of interest and 
then construct a model with just that physics. We 
can then investigate the process’s sensitivity to the 
physics and the parameters involved. 

In this case, we construct a simple set of cou-
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Figure 6. Vorticity field for beta plane turbulence. By comparing a 
snapshot of the turbulence with (a) no jet and (b) with a strong jet, 
we see a reduction in the cross flow scale lengths and amplitude of 
the turbulence in the case with the jet.
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 Figure 7. Tracers. The trajectories of nine tracer particles shows 
anomalous diffusion-like paths as well as the multiple scale sizes 
characteristic of a turbulent system.
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pled ordinary differential equations to model the 
coupling of the flow with the turbulence and thus 
gain insight into the system’s behavior.12 The cou-
pled system is governed by

d
dt

U
E

E E E= − −γ α α0 1
2

2
2 ,

 dU
dt

U U= − + +µ α τ3 E ,

where E is the normalized average turbulent fluc-
tuation amplitude; U is the averaged flow shear;  
is the linear drive term; the  terms are the non-
linear saturation, shear suppression, and Reynolds 
stress flow generation terms;  is the flow-damp-
ing term; and  represents an external torque. The 
system allows two stable steady-state solutions 
(and one unstable solution). 

Figure 9a shows the solution for large damp-
ing relative to the drive, in which the flow is zero 
and all the energy goes into the turbulence; Fig-
ure 9b shows the solution for large drive relative 
to damping. Here, the system transitions to a 
state in which some of the energy is taken from 
the turbulence and drives the sheared flow. The 
system can access this transition either through 
a reduction of the damping or an increase in 
the drive. This type of model helps research-
ers understand the interaction between sheared 
flow and turbulence and has yielded insight into 
transport barriers in plasmas (regions of reduced 
transport and hence increased gradients). Such 
insights might also be applicable to geophysical 
flows such as the QBO.

Finally, we can use an even simpler model to in-
vestigate the interaction between the sheared flows 
and correlated transport events that are thought to 

be important in confined plasmas as well as ther-
mally driven fluid turbulence. To understand the 
complex gradient-driven dynamics of correlated-
event-dominated turbulent (anomalous) transport, 
researchers have used a simple cellular automata 
self-organized-criticality model based on the dy-
namics of avalanches in sandpiles.13 The cellular 
automata rules governing the system are simple: if 
the local gradient is greater than a critical gradi-
ent, the sandpile becomes locally unstable, and a 
given number of grains fall to the next site down. 
This uncomplicated model displays remarkably 
rich dynamics that have many characteristics in 
common with the observed transport dynamics 
in marginal temperature-driven turbulence and 
in magnetically confined plasmas. 

Transport events (such as avalanches) span 
all sizes up to the system size in an unsheared 
system, leading to very efficient transport. How-
ever, large transport events break apart in the 
sheared region, reducing effective transport. 
This sheared decorrelation reduces diffusivity 
and fundamentally changes the scaling of the dy-
namics. For a visualization of the effect sheared 
flows have on avalanche sizes and hence trans-
port, see http://ffden-2.phys.uaf.edu/avalanche.
html. The insights gained from this model has 
yielded new understanding of transport in plas-
mas and has led to an appreciation of the physics 
needed in more complete models to capture the 
dynamics in experiments.

T he real impact of turbulence and 
shear-flow processes on transport is 
an open question. If subgrid scales 
are subject to a suppression of trans-
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Figure 8. Analysis results. (a) Cross-jet diffusion is a function of jet strength, with diffusion decreasing until 
the jet becomes K-H unstable. (b) Cross and parallel diffusion with a constant (stable) jet is a function of 
turbulence amplitude. Parallel “advective” diffusion dominates until turbulent shearing exceeds jet shearing.
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port by shear flow, then subgrid-scale param-
eterization becomes quite different from what 
it would be otherwise. How to best incorporate 
such effects in subgrid-scale parameterization 
is therefore another open issue. Our analysis of 
these interactions illustrates how we can fruit-
fully analyze and understand complex dynamics 
through a hierarchical approach to modeling. We 
represented each process with a successively sim-
pler model, yet the effect of shear flow was con-
sistent both qualitatively and quantitatively. The 
simplicity of some of these models lets researchers 
and students interact at many levels. With a hier-
archical approach, we can isolate, understand, and 
model essential physics, first in a simple setting 
with transparent effects and then in increasingly 
more realistic settings. 
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Figure 9. Solutions (red is turbulence and blue is sheared flow). For (a) large damping relative to drive, we 
get strong turbulence but no shear flow steady state. For (b) large drive relative to damping, we get a 
steady state with suppressed turbulence and a shear flow.


